国际麻醉学与复苏杂志   2018, Issue (11): 0-0
    
机器人辅助腹腔镜前列腺癌根治术患者肺功能保护的临床研究
王婷, 陈珂, 王义桥, 鲁显福, 李元海1()
1.安徽医科大学第一附属医院
A clinical study of lung function protection in patients with robot assisted laparoscopic radical prostatectomy
 全文:
摘要:

目的 评价手法复张肺保护性策略对于多模式监测下机器人辅助腹腔镜前列腺癌根治术患者术中肺功能的影响。 方法 120例择期行机器人辅助腹腔镜下前列腺癌根治术的患者,ASA分级Ⅰ~Ⅲ级,采用随机数字表法分为4组(每组30例):多模式监测+手法复张组(Mm组)、多模式监测组(M组)、常规麻醉+手法复张组(m组)和常规麻醉组(C组)。Mm组、M组以BIS值45~55为目标靶控输注丙泊酚,用肌松监测仪闭环输注顺苯磺酸阿曲库铵,用vigileo监测调控液体输注;m组、C组根据麻醉经验进行麻醉深度的维持和管理。M组、C组维持气道峰压(airway pressure, Ppeak)≤30 cmH2O(1 cmH2O=0.098 kPa)和PETCO2 35~40 mmHg(1 mmHg=0.133 kPa)。Mm组、m组从建立气腹后,每30 min行手法肺复张1次,直至术毕。分别于麻醉诱导前(T1)、插管后15 min(T2)、气腹后10 min(T3)、气腹后30 min(T4)、Trendelenburg体位60 min(T5)、气腹停止后10 min(T6)及拔管后5 min(T7),采集桡动脉血行血气分析,并记录相应时间点Ppeak、气道平台压(airway platform pressure, Pplat)、PETCO2、呼气末正压(end-expiratory positive pressure, PEEP)和潮气量(tidal volume, VT),计算各时间点动态肺顺应性(dynamic lung compliance, Cdyn)、呼吸指数(spiro-index, RI)、死腔率(dying cavity rate, VD/VT)、氧合指数(oxygenation index, PaO2/FiO2)和肺泡-动脉血氧分压差(alveolar arterial PO2 difference, A-aDO2)。 结果 T3、T4时Mm组、m组Ppeak较M组、C组稳定(P<0.05),T3、T5时Mm、m组Pplat较M组、C组稳定(P<0.05);Mm、m组在T5~T7时PaO2/FiO2较M组、C组升高(P<0.05);在T4、T5、T7时A?蛳aDO2、RI较M组、C组降低(P<0.05);在T4~T6时Cydn较M组、C组升高(P<0.05)。 结论 手法复张肺保护性通气策略可以改善多模式监测下机器人辅助腹腔镜前列腺癌根治术患者术中肺功能。

关键词: 机器人; 腹腔镜治疗; 保护性肺通气; 多模式监测; 前列腺癌
Abstract:

Objective To evaluate the effect of manipulative pulmonary protective strategy on the pulmonary function of the patients undergoing robotic assisted laparoscopic radical prostatectomy under multiple- mode monitoring. Methods One hundred and twenty patients who underwent robot-assisted laparoscopic radical prostatectomy were divided into 4 groups (30 cases in each group) according to ASA Ⅰ-Ⅲ. Multimodal monitoring + manual relaxation group (group Mm), multimodal monitoring group (group M), conventional anesthesia + manual relaxation group (group m) and conventional anesthesia group (group C). In group Mm and group M, propofol was infused to achieve the BIS value of 45-55, then we monitored the muscle relaxation to conduct closed-loop infusion of cisatracurium. We also monitored and managed liquid input by vigileo. Group M and group C maintained peak airway pressure (≤30 cmH2O) (1 cmH2O=0.098 kPa) and PETCO2 35-40 mmHg (1 mmHg=0.133 kPa). Group Mm and group m received manual lung recruitment maneuver one times every 30 min after establishment of pneumoperitoneum until the end of operation. Blood gas analysis was performed before anesthesia induction (T1), 15 min after intubation (T2), 10 min after pneumoperitoneum (T3), 30 min after pneumoperitoneum (T4), 60 min after Trendelenburg (T5), 10 min after pneumoperitoneum cessation (T6), 5 min after extubation (T7). Airway peak pressure (Ppeak) and airway plateau pressure (Pplat) were recorded. The value of dynamic lung compliance (Cdyn), spiro-index (RI), dying cavity rate (VD/VT), oxygenation index (PaO2/FiO2) and alveolar arterial PO2 difference (A-aDO2) were calculated at different time points. Results Ppeak of group Mm and group m were more stable than Ppeak of group M and group C at T3 and T4 (P<0.05). Pplat of group Mm and group m were more stable than Pplat of group M and group C at T3 and T5 (P<0.05). Oxygenation indexes of group Mm and group m were higher than indexes of group M and group C at T5-T7 (P<0.05). A-aDO2 and RI were lower than group M and group C at T4, T5, T7 (P<0.05). At T4-T6, Cdyn was higher than Cdyn in group M and group C (P<0.05). Conclusions Manipulative pulmonary protective ventilation can improve the pulmonary function in patients undergoing robotic assisted laparoscopic radical prostatectomy under multimode monitoring.

Key words: Robot; Therapeutic laparoscopy; Protective lung ventilation; Multi-mode monitoring; Prostate cancer